h

6

6 8

8668688

6

8

10

8

10

10

10

8

10

3555757577597

8

6

k

4

4

6

4

0

6

2

6

26

4

6

4

3

1

3

3

1

5

3

5

3

5

5

1

5

tensities were less than 1% and, with the exception of the h00 and hhh reflexions, at least six symmetry-equivalent reflexions were measured, the final observed structure factors being taken to be the average over their symmetry equivalents. All reflexions having sin $\theta < 70^\circ$ were measured for planes of even indices but, for planes of odd indices, only reflexions having sin $\theta < 54^\circ$ could be measured to the desired accuracy in an acceptable time due to the low reflectivity.

Since magnesium oxide has the rock-salt structure, the thermal parameters for the two ions can be found by simple graphical methods. Only those reflexions having $(\sin \theta)/\lambda > 0.35$ were used since the corresponding scattering factors are then almost independent of the state of ionization of the atoms and lower-order reflexions may be suffering from extinction. The scattering factors used were those in *International Tables for X-ray Crystallography* (1968). The temperature factors obtained were:

 $B(\text{magnesium}) = 0.30 \pm 0.01 \text{ Å}^2$ $B(\text{oxygen}) = 0.34 \pm 0.02 \text{ Å}^2.$

These values are considerably higher than those obtained by Togawa which were calculated using only those reflexions in the region $(\sin \theta)/\lambda < 0.63$, the calculated structure factor in this range being dependent on the state of ionization of the magnesium and oxygen ions.

Table 1 shows the observed and calculated structure factors for magnesium oxide. The R index is 0.0062, showing an agreement between the observed and calculated structure factor comparable with that obtained with similar materials using data measured on the same diffractometer (*e.g.* Killean, Lawrence & Sharma, 1972).

Table 1	Observed and	calculated	structure	factors
1 4010 1.	Observeu unu	curcururcu	Sunctare	juciors

h	k	1	Fo	F_{c}
4	4	0	29.22	29.00
6	0	0	16.75	16.70
4	4	2	16.55	16.70
6	2	0	15.54	15.51
6	2	2	14·5 2	14.34
4	4	4	13.38	13.41

0	0	10.90
2	0	10.25
4	4	10.23
6	0	9.84
2	2	9.79
6	2	9.38
4	0	9∙06
4	2	8.61

4

4

0

0

0

2 2

6

0

4

2

3

1

1

3

1

1

1

3

3

1

5

1

3

l

0

2

Table 1. (cont.)

 F_o

12.68

11.92

8.28

7.61

7.30

7.37

7.07

7.14

6.92

6.86

6.49

6.52

6.21

7.19

7.23

5.46

4.15

3.30

3.32

2.68

2.65

2.19

1.94

1.95

1.68

1.64

 F_{c}

12.63

11.89

10.73

10.21

10.21

9.74

9.74

9.36

8.99

8.62

8.29

7.69

7.41

7.41

7.15

7.15

6.91

6.91

6.48

6.48

6.27

7.23

7.23

5.47

4.23

3.33

3.33

2.67

2.67

2.22

1.91

1.91

1.67

1.67

References

International Tables for X-ray Crystallography (1968). Vol. III. p. 202. Birmingham: Kynoch Press.

KILLEAN, R. C. G., LAWRENCE, J. L. & SHARMA, V. C. (1972). Acta Cryst. A28, 405-407.

LAWRENCE, J. L. (1972). Acta Cryst. A28, 400-404.

TOGAWA, S. (1965). J. Phys. Soc. Japan. 20, 742-752.

Acta Cryst. (1973) A29, 96

Constrained refinement techniques applied to the structure of ammonium hydrogen sulphate above the ferro-

electric transition: errata. By R.J. NELMES, Department of Physics, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland

(Received 21 September 1972)

Corrections are given to Acta Cryst. (1972), A28, 445-454.

Three printing errors have been found in Nelmes (1972). The corrections are as follows:

- (1) In Table 6, for atom $O(1)^- Z$ should be 2.435 and not 2.345.
- (2) In Table 6, for atom O(7) U_{31} should be -0.0171 and not -0.171.
- (3) In the heading of Table 7, after the colon on the third line, the correct form is 'T parameters (in order $T_{11}, T_{22}, T_{33}, T_{23}, T_{31}, T_{12}) \ldots$ ', *i.e.* T_{33} and T_{23} have been interchanged.

Reference

NELMES, R.J. (1972). Acta Cryst. A28, 445-454.